Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202404018, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593269

RESUMO

Biomolecular condensates have emerged as important structures in cellular function and disease, and are thought to form through liquid-liquid phase separation (LLPS). Thorough and efficient in vitro experiments are therefore needed to elucidate the driving forces of protein LLPS and the possibility to modulate it with drugs. Here we present Taylor dispersion induced phase separation (TDIPS), a method to robustly measure condensation phenomena using a commercially available microfluidic platform. It uses only nano-liters of sample, does not require extrinsic fluorescent labels, and is straightforward to implement. We demonstrate TDIPS by screening the phase behaviour of two proteins that form biomolecular condensates in vivo, PGL-3 and Ddx4. Uniquely accessible to this method, we find an unexpected re-entrant behaviour at very low ionic strength, where LLPS is inhibited for both proteins. TDIPS can also probe the reversibility of assemblies, which was shown for both α-synuclein and for lysozyme, relevant for health and biotechnology, respectively. Finally, we highlight how effective inhibition concentrations and partitioning of LLPS-modifying compounds can be screened highly efficiently.

2.
Food Res Int ; 181: 114063, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448113

RESUMO

The use of infant formulas (IFs) based on hydrolyzed cow's milk proteins to prevent cow's milk allergy (CMA) is highly debated. The risk of sensitization to milk proteins induced by IFs may be affected by the degree of hydrolysis (DH) as well as other physicochemical properties of the cow's milk-based protein hydrolysates within the IFs. The immunogenicity (specific IgG1 induction) and sensitizing capacity (specific IgE induction) of 30 whey- or casein-based hydrolysates with different physicochemical characteristics were compared using an intraperitoneal model of CMA in Brown Norway rats. In general, the whey-based hydrolysates demonstrated higher immunogenicity than casein-based hydrolysates, inducing higher levels of hydrolysate-specific and intact-specific IgG1. The immunogenicity of the hydrolysates was influenced by DH, peptide size distribution profile, peptide aggregation, nano-sized particle formation, and surface hydrophobicity. Yet, only the surface hydrophobicity was found to affect the sensitizing capacity of hydrolysates, as high hydrophobicity was associated with higher levels of specific IgE. The whey- and casein-based hydrolysates exhibited distinct immunological properties with highly diverse molecular composition and physicochemical properties which are not accounted for by measuring DH, which was a poor predictor of sensitizing capacity. Thus, future studies should consider and account for physicochemical characteristics when assessing the sensitizing capacity of cow's milk-based protein hydrolysates.


Assuntos
Hipersensibilidade a Leite , Soro do Leite , Humanos , Animais , Bovinos , Feminino , Lactente , Ratos , Caseínas , Hipersensibilidade a Leite/prevenção & controle , Hidrólise , Hidrolisados de Proteína , Proteínas do Soro do Leite , Proteínas do Leite , Imunoglobulina G , Peptídeos , Imunoglobulina E
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...